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Memory Technology
n Static RAM (SRAM)

n 0.5ns – 2.5ns, $2000 – $5000 per GB
n Dynamic RAM (DRAM)

n 50ns – 70ns, $20 – $75 per GB
n Magnetic disk

n 5ms – 20ms, $0.20 – $2 per GB
n Ideal memory

n Access time of SRAM
n Capacity and cost/GB of disk

§
5.1 Introduction
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Principle of Locality
n Programs access a small proportion of 

their address space at any time
n Temporal locality

n Items accessed recently are likely to be 
accessed again soon

n e.g., instructions in a loop, induction variables
n Spatial locality

n Items near those accessed recently are likely 
to be accessed soon

n E.g., sequential instruction access, array data
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Taking Advantage of Locality
n Memory hierarchy
n Store everything on disk
n Copy recently accessed (and nearby) 

items from disk to smaller DRAM memory
n Main memory

n Copy more recently accessed (and 
nearby) items from DRAM to smaller 
SRAM memory
n Cache memory attached to CPU
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Memory Hierarchy Levels
n Block (aka line): unit of copying

n May be multiple words
n If accessed data is present in 

upper level
n Hit: access satisfied by upper level

n Hit ratio: hits/accesses

n If accessed data is absent
n Miss: block copied from lower level

n Time taken: miss penalty
n Miss ratio: misses/accesses

= 1 – hit ratio
n Then accessed data supplied from 

upper level
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Cache Memory
n Cache memory

n The level of the memory hierarchy closest to 
the CPU

n Given accesses X1, …, Xn–1, Xn

§
5.2 The Basics of C

aches

n How do we know if 
the data is present?

n Where do we look?



7

Direct Mapped Cache
n Location determined by address
n Direct mapped: only one choice

n (Block address) modulo (#Blocks in cache)

n #Blocks is a 
power of 2

n Use low-order 
address bits
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Tags and Valid Bits
n How do we know which particular block is 

stored in a cache location?
n Store block address as well as the data
n Actually, only need the high-order bits
n Called the tag

n What if there is no data in a location?
n Valid bit: 1 = present, 0 = not present
n Initially 0
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Address Subdivision
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Example: Large Block Size
n 64 blocks, 16 bytes/block

n To what block number does address 1200 
map?

n Block address = ë1200/16û = 75
n Block number = 75 modulo 64 = 11

Tag Index Offset
03491031

4 bits6 bits22 bits



11

Example: Cache 4 kbytes and 16 bytes/block

04FA067
4b

ADDRESS (32 b) 
FA06704C

DIRECTORY BLOCKS

H
2F3D0...0257F

8b20b
C

00

FF

FA067 2F 3D 00 A0 A0FF 25 7F

A0003D2F

C

CPU

04
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Associative Caches
n Fully associative

n Allow a given block to go in any cache entry
n Requires all entries to be searched at once
n Comparator per entry (expensive)

n n-way set associative
n Each set contains n entries
n Block number determines which set

n (Block address) modulo (#Sets in cache)
n Search all entries in a given set at once
n n comparators (less expensive)
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Fully associative (FA)

TAG BITS BYTE IN 
BLOCK

ADDRESS

DIRECTORY BLOCKS

hit or error?

=?
=?
=?

=?
=?

If hit, it 
indicates 
which is the 
block 
searched 
and gives 
the word 
searched 
(all of a part 
of the block) 
to CPU

As many comparators as blocks
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Example: Cache FA 512 bytes and 8 
bytes/block

0045FF3  0

DIRECTORY BLOCKS

Hit or error?

E

H

ADDRESS (32 b) 
0045FF34100

0045FF3  0

54445F0  0

0045FF3  1

6632FF3  1

F045FF3  0

0F FA 00 FF 33 AA 0F 22 0FFA0.....A0F22

100

FF00FA0F
E

E

E

64 comp.

CPU

3b29b
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N-way set associative (N-A)

INDEX BITSTAG BITS BYTE  IN 
BLOCK

ADDRESS

Hit or error?

DIRECTORY BLOCKS
WAY-1 WAY-n

=?=?

If hit, take the word 
of the block with hit 
and give it to CPU

BL-1

DIRECTORY BLOCKS

BL-N

As many comparators as ways
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Example: Cache N-A4W 4kbytes and 64 
bytes/block

AFA64 00
6b4b22b

00 8

452DD3FF...48 Bytes...4356FFCD3D3F4F3D00A03420

ADDRESS (32 b) 
AFA643081100

1100

WAY-3WAY-2 WAY-4WAY-1

3FAA....

0

F

46FF....257A....AFA64 00

CDFF5643001000 CPU
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How Much Associativity
n Increased associativity decreases miss 

rate
n But with diminishing returns

n Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
n 1-way: 10.3%
n 2-way: 8.6%
n 4-way: 8.3%
n 8-way: 8.1%
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Set Associative Cache Organization
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Block Size Considerations
n Larger blocks should reduce miss rate

n Due to spatial locality
n But in a fixed-sized cache

n Larger blocks Þ fewer of them
n More competition Þ increased miss rate

n Larger blocks Þ pollution
n Larger miss penalty

n Can override benefit of reduced miss rate
n Early restart and critical-word-first can help
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Cache Misses
n On cache hit, CPU proceeds normally
n On cache miss

n Stall the CPU pipeline
n Fetch block from next level of hierarchy
n Instruction cache miss

n Restart instruction fetch
n Data cache miss

n Complete data access
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Write-Through
n On data-write hit, could just update the block in 

cache
n But then cache and memory would be inconsistent

n Write through: also update memory
n But makes writes take longer

n e.g., if base CPI = 1, 10% of instructions are stores, 
write to memory takes 100 cycles

n Effective CPI = 1 + 0.1×100 = 11

n Solution: write buffer
n Holds data waiting to be written to memory
n CPU continues immediately

n Only stalls on write if write buffer is already full
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Write-Back
n Alternative: On data-write hit, just update 

the block in cache
n Keep track of whether each block is dirty

n When a dirty block is replaced
n Write it back to memory
n Can use a write buffer to allow replacing block 

to be read first



23

Write Allocation
n What should happen on a write miss?
n Alternatives for write-through

n Allocate on miss: fetch the block
n Write around: don’t fetch the block

n Since programs often write a whole block before 
reading it (e.g., initialization)

n For write-back
n Usually fetch the block
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Example: Intrinsity FastMATH
n Embedded MIPS processor

n 12-stage pipeline
n Instruction and data access on each cycle

n Split cache: separate I-cache and D-cache
n Each 16KB: 256 blocks × 16 words/block
n D-cache: write-through or write-back

n SPEC2000 miss rates
n I-cache: 0.4%
n D-cache: 11.4%
n Weighted average: 3.2%
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Example: Intrinsity FastMATH
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Main Memory Supporting Caches
n Use DRAMs for main memory

n Fixed width (e.g., 1 word)
n Connected by fixed-width clocked bus

n Bus clock is typically slower than CPU clock

n Example cache block read
n 1 bus cycle for address transfer
n 15 bus cycles per DRAM access
n 1 bus cycle per data transfer

n For 4-word block, 1-word-wide DRAM
n Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles
n Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle
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Increasing Memory Bandwidth

n 4-word wide memory
n Miss penalty = 1 + 15 + 1 = 17 bus cycles
n Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

n 4-bank interleaved memory
n Miss penalty = 1 + 15 + 4×1 = 20 bus cycles
n Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle
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Advanced DRAM Organization
n Bits in a DRAM are organized as a 

rectangular array
n DRAM accesses an entire row
n Burst mode: supply successive words from a 

row with reduced latency
n Double data rate (DDR) DRAM

n Transfer on rising and falling clock edges
n Quad data rate (QDR) DRAM

n Separate DDR inputs and outputs
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DRAM Generations

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac
Tcac

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50
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Measuring Cache Performance
n Components of CPU time

n Program execution cycles
n Includes cache hit time

n Memory stall cycles
n Mainly from cache misses

n With simplifying assumptions:

§
5.3 M

easuring and Im
proving C

ache Perform
ance

penalty Miss
nInstructio

Misses
Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory 

cycles stallMemory 

´´=

´´=
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Cache Performance Example
n Given

n I-cache miss rate = 2%
n D-cache miss rate = 4%
n Miss penalty = 100 cycles
n Base CPI (ideal cache) = 2
n Load & stores are 36% of instructions

n Miss cycles per instruction
n I-cache: 0.02 × 100 = 2
n D-cache: 0.36 × 0.04 × 100 = 1.44

n Actual CPI = 2 + 2 + 1.44 = 5.44
n Ideal CPU is 5.44/2 =2.72 times faster
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Average Access Time
n Hit time is also important for performance
n Average memory access time (AMAT)

n AMAT = Hit time + Miss rate × Miss penalty
n Example

n CPU with 1ns clock, hit time = 1 cycle, miss 
penalty = 20 cycles, I-cache miss rate = 5%

n AMAT = 1 + 0.05 × 20 = 2ns
n 2 cycles per instruction
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Performance Summary
n When CPU performance increased

n Miss penalty becomes more significant
n Decreasing base CPI

n Greater proportion of time spent on memory 
stalls

n Increasing clock rate
n Memory stalls account for more CPU cycles

n Can’t neglect cache behavior when 
evaluating system performance
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Replacement Policy
n Direct mapped: no choice
n Set associative

n Prefer non-valid entry, if there is one
n Otherwise, choose among entries in the set

n Least-recently used (LRU)
n Choose the one unused for the longest time

n Simple for 2-way, manageable for 4-way, too hard 
beyond that

n Random
n Gives approximately the same performance 

as LRU for high associativity
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BLOCK REFERENCED CB0 CB1 CB2 CB3 STATE LRU 
Initial state 0 0 0 0 Empty blocks B0,B1,B2,B3 

Error cache access 0 1 1 1 B0 full B1,B2, B3 
Error cache access 1 0 2 2 B0,B1 full B2,B3 

Hit in  B0 0 1 2 2 B0,B1  full B2,B3 
Error cache access 1 2 0 3 B0,B1,B2  full B3 
Error cache access 2 3 1 0 All blocks full B1 

Hit in B1 3 0 2 1 All blocks full B0 
Error cache access 0 1 3 2 All blocks full B2 
Error cache access 1 2 0 3 All blocks full B3 

 

Example: Cache N-A4W: counter 2bits (LRU)
Which is the LRU block?

Replacement Policy



36

Multilevel Caches
n Primary cache attached to CPU

n Small, but fast
n Level-2 cache services misses from 

primary cache
n Larger, slower, but still faster than main 

memory
n Main memory services L-2 cache misses
n Some high-end systems include L-3 cache
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Multilevel Cache Example
n Given

n CPU base CPI = 1, clock rate = 4GHz
n Miss rate/instruction = 2%
n Main memory access time = 100ns

n With just primary cache
n Miss penalty = 100ns/0.25ns = 400 cycles
n Effective CPI = 1 + 0.02 × 400 = 9
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Example (cont.)
n Now add L-2 cache

n Access time = 5ns
n Global miss rate to main memory = 0.5%

n Primary miss with L-2 hit
n Penalty = 5ns/0.25ns = 20 cycles

n Primary miss with L-2 miss
n Extra penalty = 400 cycles

n CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
n Performance ratio = 9/3.4 = 2.6
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Multilevel Cache Considerations
n Primary cache

n Focus on minimal hit time
n L-2 cache

n Focus on low miss rate to avoid main memory 
access

n Hit time has less overall impact
n Results

n L-1 cache usually smaller than a single cache
n L-1 block size smaller than L-2 block size
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Interactions with Advanced CPUs
n Out-of-order CPUs can execute 

instructions during cache miss
n Pending store stays in load/store unit
n Dependent instructions wait in reservation 

stations
n Independent instructions continue

n Effect of miss depends on program data 
flow
n Much harder to analyse
n Use system simulation
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Interactions with Software
n Misses depend on 

memory access 
patterns
n Algorithm behavior
n Compiler 

optimization for 
memory access
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Virtual Memory
n Use main memory as a “cache” for 

secondary (disk) storage
n Managed jointly by CPU hardware (MMU) and 

the operating system (OS)
n Programs share main memory

n Each gets a private virtual address space 
holding its frequently used code and data

n Protected from other programs
n CPU and OS translate virtual addresses to 

physical addresses
n VM “block” is called a page
n VM translation “miss” is called a page fault

§
5.4 Virtual M

em
ory
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Address Translation
n Fixed-size pages (e.g., 4K)

n Variable-size segments
n Segments with fixed-size pages
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Page Fault Penalty
n On page fault, the page must be fetched 

from disk
n Takes millions of clock cycles
n Handled by OS code

n Try to minimize page fault rate
n Fully associative placement
n Smart replacement algorithms
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Page Tables
n Stores placement information

n Array of page table entries (PTE), indexed by 
virtual page number

n Page table register in CPU points to page 
table in physical memory

n If page is present in memory
n PTE stores the physical page number
n Plus other status bits (referenced, dirty, …)

n If page is not present
n PTE (Page Translation Entry) can refer to 

location in swap space on disk
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Mapping Pages to Storage
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Translation Using a Page Table
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Example: Virtual memory: 4 GB (232), real: 16 MB (224). Page size: 4 
kB (212)

We need 
SRAM  of 

220x12 bits!

00000

12 b

FFFFF
Real addr.

312 D00
MEMORY{312D00}

312

V.A.
CPU {FFAACD00} D00FFAAC

20 b

Impossible full 
associative (220

comparators)

To reduce the page table size, it is built according to the process 
requirements.

Translation Using a Page Table
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qMulti-level Page Table. 
qTo reduce the size of the page table (not all the sub-tables 
reside in memory)

OFFSETV.A. Level 1

Pag. T. Level-1 
or Directory

Real 
addr.

FRAME OFFSET

MEMORY

CPU Level 2 Level n

Pag. T. Level-2

Pag. T. Level-n

FRAME

Base N2

Base N3

Register pointer

Level 1 table is the 
directory and is like a 
cache.

Translation Using a Page Table
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Page Table with 3 levels
Example: Virtual Memory: 4 GB (232), Real: 16 MB (224). Page size: 1 
kB (210)
CPU {FFAACD00}

V.A.
0100FA1
10b9b

010C11
9b

F
4b

0

F
Directory

000

FF1
Table N2

000

FF1
Table N3

000

FF1
Table N3

010C11

000

FF1
Table N2

FA1
31211

MEM
Real 
addr.

{312D00}
010031211

Descriptors of 2 Bytes, 
each table (except the 
first) fits 1 page

Translation Using a Page Table
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Fast Translation Using a TLB
n Address translation would appear to require 

extra memory references
n One to access the PTE (Page Translation Entry)
n Then the actual memory access

n But access to page tables has good locality
n So use a fast cache of PTEs within the CPU
n Called a Translation Look-aside Buffer (TLB)
n Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 

cycles for miss, 0.01%–1% miss rate
n Misses could be handled by hardware or software
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Fast Translation Using a TLB
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TLB N-way Associative, 2 ways, 16 entries/way
Ejemplo: Virtual Memory: 4 GB (232), Real: 16 MB (224). Page size: 4 
kB (212)

PAGE FRAME
WAY-1 WAY-2

HE

PAGE FRAME
0

F

CPU {FFAACD00} D00FFAA
12b16b 4b

C

FFAAAAFF 2F0 312

MEMORY

Real addr.
{312D00}

D00312

Fast Translation Using a TLB
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TLB Misses
n If page is in memory

n Load the PTE from memory and retry
n Could be handled in hardware

n Can get complex for more complicated page table 
structures

n Or in software
n Raise a special exception, with optimized handler

n If page is not in memory (page fault)
n OS handles fetching the page and updating 

the page table
n Then restart the faulting instruction
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TLB Miss Handler
n TLB miss indicates

n Page present, but PTE not in TLB
n Page not present

n Must recognize TLB miss before 
destination register overwritten
n Raise exception

n Handler copies PTE from memory to TLB
n Then restarts instruction
n If page not present, page fault will occur
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Page Fault Handler
n Use faulting virtual address to find PTE
n Locate page on disk
n Choose page to replace

n If dirty, write to disk first
n Read page into memory and update page 

table
n Make process runnable again

n Restart from faulting instruction
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Replacement and Writes
n To reduce page fault rate, prefer least-

recently used (LRU) replacement
n Reference bit (aka use bit) in PTE set to 1 on 

access to page
n Periodically cleared to 0 by OS
n A page with reference bit = 0 has not been 

used recently
n Disk writes take millions of cycles

n Block at once, not individual locations
n Write through is impractical
n Use write-back
n Dirty bit in PTE set when page is written
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The information stored in a TLB or page table entry is called 
descriptor and contains:

n Page frame: It gives the real address (Real address = FRAME & 
OFFSET)
n Bits to control:

n Present bit: ’1’ indicates the page referenced resides in main 
memory

n Use bit: ’1’ to indicate that some element of the page has been 
referenced. It is used to decide which page is replaced.

n Dirty bit:’1’ to indicate that some data in the page has been 
modified (written).

n Protection bits: supervisor, only-readable, non-cacheable, used by 
the OS.

n Replacement bits: to apply the replacement algorithms (LRU, etc).

Page table information
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Translation using a Segment Table

The address is divided into segment and offset

OFFSETV. A. SEGMENT

DESCRIPTOR

Real address

POINTER TO A 
SEGMENT 
TABLE

MEMORY

CPU

>?,+

Check that the offset is less 
than the size of the segment 
(which may vary)

Final real address is a 
sum and not a 
concatenation as in 
page table.
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Translation using a Segment Table
What does the segment descriptor contain?

n Segment start address: It is added to the offset 
to compute the real address

n Segment size: It must be greater than the offset
n Bits to control

n Present bit in main memory
n Protection bit: against write operations (code 

segment)
n Exclusion bit:  to restringe the access (system 

security)
n Bits for replacement algorithms: LRU



61

Translation using Segment+Page Tables

MAIN MEMORY

Process-4Process-3

Process-1 Process-2

P1 P1 P1 P2 P2P3 P3 P3P4 P4
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Translation using Segment+Page Tables

Real address

OFFSET

V.A. SEGMENT

POINTER

MEMORY

CPU

>?BASE TAB

PAGE OFFSET

FRAME

OFFSETFRAME

SIZE

How is the translation between 
virtual address and real address?
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Translation using Segment+Page Tables

Real address

OFFSET

V.A. SEGMENT

MEMORY

CPU PAGE OFFSET

OFFSETFRAME

TLB with Segment+Page Tables

TLB

=?
=?
=?
=?
=?

SEG-PAG FRAME
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TLB and Cache Interaction
n If cache tag uses 

physical address
n Need to translate 

before cache lookup
n Alternative: use virtual 

address tag
n Complications due to 

aliasing
n Different virtual 

addresses for shared 
physical address



65

n Virtual Cache (from virtual address)

❑Same time access to cache and TLB
❑ Memory access time: hit cache, tc, error cache, tTLB+tB+tc
❑aliasing: two virtual addresses to the same real address -> 2 entries in virtual 
cache for the same data
❑ Cache problem with different processes: there can be virtual addresses 
duplicated. To avoid this, a process identifier is added to the virtual address

CPU

Cache

Sec.Mem

Fault treatment
(OS)

R.A.TLBV.A.

Page 
Table

Error

Data

Main MemData

TLB and Cache Interaction
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n Real Cache (from real address)

CPU

Cache Sec. Mem

Fault treatment 
(OS)

R.A.TLBV.A.

Page 
Table

Error

Data

Main Mem

❑ Minimum memory access time: TLB time + cache time

❑ Solved having several address spaces

❑ To speed-up, page offset can contain the index and the byte in block 
of the cache

TLB and Cache Interaction
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n Real cache with parallel access to the TLB frame 
and cache tag. Next, compare between frame and 
tag.

DATA

V.A.

CPU

CPU

PAG Nº

PAGE
OFFSET

FRAME

TLB

=?
=?
=?
=?
=?

B/BINDEX

CACHE
=?

TAG

DIR. BLOCK

TLB and Cache Interaction
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Example.- V.A.: 32b; R.A.: 20b; Pag. table: 256 Bytes
TLB FA 32 entries; Cache DM 256 Bytes, 16 B/B. 

CD223540

V.A. {0A07B55C}

CPU

CPU

0A07B5

0A07B5

TLB

=?
=?
=?
=?
=?

C5

CACHE
H

32 
Comp. 3DC 3DC CD223540 …33AA

“Offset must include the real cache index so that we 
can access TLB and cache in parallel”

TLB and Cache Interaction
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Memory Protection
n Different tasks can share parts of their 

virtual address spaces
n But need to protect against errant access
n Requires OS assistance

n Hardware support for OS protection
n Privileged supervisor mode (aka kernel mode)
n Privileged instructions
n Page tables and other state information only 

accessible in supervisor mode
n System call exception (e.g., syscall in MIPS)
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The Memory Hierarchy

n Common principles apply at all levels of 
the memory hierarchy
n Based on notions of caching

n At each level in the hierarchy
n Block placement
n Finding a block
n Replacement on a miss
n Write policy

§
5.5 A C

om
m

on Fram
ew

ork for M
em

ory H
ierarchies
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Block Placement
n Determined by associativity

n Direct mapped (1-way associative)
n One choice for placement

n n-way set associative
n n choices within a set

n Fully associative
n Any location

n Higher associativity reduces miss rate
n Increases complexity, cost, and access time
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Finding a Block

n Hardware caches
n Reduce comparisons to reduce cost

n Virtual memory
n Full table lookup makes full associativity feasible
n Benefit in reduced miss rate

Associativity Location method Tag comparisons
Direct mapped Index 1
n-way set 
associative

Set index, then search 
entries within the set

n

Fully associative Search all entries #entries
Full lookup table 0
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Replacement
n Choice of entry to replace on a miss

n Least recently used (LRU)
n Complex and costly hardware for high associativity

n Random
n Close to LRU, easier to implement

n Virtual memory
n LRU approximation with hardware support
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Write Policy
n Write-through

n Update both upper and lower levels
n Simplifies replacement, but may require write 

buffer
n Write-back

n Update upper level only
n Update lower level when block is replaced
n Need to keep more state

n Virtual memory
n Only write-back is feasible, given disk write 

latency 
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Sources of Misses
n Compulsory misses (aka cold start misses)

n First access to a block
n Capacity misses

n Due to finite cache size
n A replaced block is later accessed again

n Conflict misses (aka collision misses)
n In a non-fully associative cache
n Due to competition for entries in a set
n Would not occur in a fully associative cache of 

the same total size



76

Cache Design Trade-offs

Design change Effect on miss rate Negative performance 
effect

Increase cache size Decrease capacity 
misses

May increase access 
time

Increase associativity Decrease conflict 
misses

May increase access 
time

Increase block size Decrease compulsory 
misses

Increases miss 
penalty. For very large 
block size, may 
increase miss rate 
due to pollution.



77

Virtual Machines
n Host computer emulates guest operating system 

and machine resources
n Improved isolation of multiple guests
n Avoids security and reliability problems
n Aids sharing of resources

n Virtualization has some performance impact
n Feasible with modern high-performance comptuers

n Examples
n IBM VM/370 (1970s technology!)
n VMWare
n Microsoft Virtual PC

§
5.6 Virtual M

achines
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Virtual Machine Monitor
n Maps virtual resources to physical 

resources
n Memory, I/O devices, CPUs

n Guest code runs on native machine in user 
mode
n Traps to VMM on privileged instructions and 

access to protected resources
n Guest OS may be different from host OS
n VMM handles real I/O devices

n Emulates generic virtual I/O devices for guest
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Example: Timer Virtualization
n In native machine, on timer interrupt

n OS suspends current process, handles 
interrupt, selects and resumes next process

n With Virtual Machine Monitor
n VMM suspends current VM, handles interrupt, 

selects and resumes next VM
n If a VM requires timer interrupts

n VMM emulates a virtual timer
n Emulates interrupt for VM when physical timer 

interrupt occurs
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Instruction Set Support
n User and System modes
n Privileged instructions only available in 

system mode
n Trap to system if executed in user mode

n All physical resources only accessible 
using privileged instructions
n Including page tables, interrupt controls, I/O 

registers
n Renaissance of virtualization support

n Current ISAs (e.g., x86) adapting
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Cache Control
n Example cache characteristics

n Direct-mapped, write-back, write allocate
n Block size: 4 words (16 bytes)
n Cache size: 16 KB (1024 blocks)
n 32-bit byte addresses
n Valid bit and dirty bit per block
n Blocking cache

n CPU waits until access is complete

§
5.7 U

sing a Finite State M
achine to C

ontrol A Sim
ple C

ache

Tag Index Offset
034131431

4 bits10 bits18 bits
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Interface Signals

CacheCPU Memory

Read/Write
Valid

Address

Write Data

Read Data

Ready

32

32

32

Read/Write
Valid

Address

Write Data

Read Data

Ready

32

128

128

Multiple cycles 
per access
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Finite State Machines
n Use an FSM to 

sequence control steps
n Set of states, transition 

on each clock edge
n State values are binary 

encoded
n Current state stored in a 

register
n Next state

= fn (current state,
current inputs)

n Control output signals
= fo (current state)
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Cache Controller FSM

Could 
partition into 

separate 
states to 

reduce clock 
cycle time
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Cache Coherence Problem
n Suppose two CPU cores share a physical 

address space
n Write-through caches

§
5.8 Parallelism

 and M
em

ory H
ierarchies: C

ache C
oherence

Time 
step

Event CPU A’s 
cache

CPU B’s 
cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1
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Coherence Defined
n Informally: Reads return most recently 

written value
n Formally:

n P writes X; P reads X (no intervening writes)
Þ read returns written value

n P1 writes X; P2 reads X (sufficiently later)
Þ read returns written value

n c.f. CPU B reading X after step 3 in example
n P1 writes X, P2 writes X
Þ all processors see writes in the same order

n End up with the same final value for X
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Cache Coherence Protocols
n Operations performed by caches in 

multiprocessors to ensure coherence
n Migration of data to local caches

n Reduces bandwidth for shared memory
n Replication of read-shared data

n Reduces contention for access
n Snooping protocols

n Each cache monitors bus reads/writes
n Directory-based protocols

n Caches and memory record sharing status of 
blocks in a directory
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Invalidating Snooping Protocols
n Cache gets exclusive access to a block 

when it is to be written
n Broadcasts an invalidate message on the bus
n Subsequent read in another cache misses

n Owning cache supplies updated value

CPU activity Bus activity CPU A’s 
cache

CPU B’s 
cache

Memory

0
CPU A reads X Cache miss for X 0 0
CPU B reads X Cache miss for X 0 0 0
CPU A writes 1 to X Invalidate for X 1 0
CPU B read X Cache miss for X 1 1 1
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Memory Consistency
n When are writes seen by other processors

n “Seen” means a read returns the written value
n Can’t be instantaneously

n Assumptions
n A write completes only when all processors have seen 

it
n A processor does not reorder writes with other 

accesses
n Consequence

n P writes X then writes Y
Þ all processors that see new Y also see new X

n Processors can reorder reads, but not writes
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Multilevel On-Chip Caches
§

5.10 R
eal Stuff: The AM

D
 O

pteron X4 and Intel N
ehalem

Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache

Intel Nehalem 4-core processor
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2-Level TLB Organization
Intel Nehalem AMD Opteron X4

Virtual addr 48 bits 48 bits
Physical addr 44 bits 48 bits
Page size 4KB, 2/4MB 4KB, 2/4MB
L1 TLB
(per core)

L1 I-TLB: 128 entries for small 
pages, 7 per thread (2×) for 
large pages
L1 D-TLB: 64 entries for small 
pages, 32 for large pages
Both 4-way, LRU replacement

L1 I-TLB: 48 entries
L1 D-TLB: 48 entries
Both fully associative, LRU 
replacement

L2 TLB
(per core)

Single L2 TLB: 512 entries
4-way, LRU replacement

L2 I-TLB: 512 entries
L2 D-TLB: 512 entries
Both 4-way, round-robin LRU

TLB misses Handled in hardware Handled in hardware
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3-Level Cache Organization
Intel Nehalem AMD Opteron X4

L1 caches
(per core)

L1 I-cache: 32KB, 64-byte 
blocks, 4-way, approx LRU 
replacement, hit time n/a
L1 D-cache: 32KB, 64-byte 
blocks, 8-way, approx LRU 
replacement, write-
back/allocate, hit time n/a

L1 I-cache: 32KB, 64-byte 
blocks, 2-way, LRU 
replacement, hit time 3 cycles
L1 D-cache: 32KB, 64-byte 
blocks, 2-way, LRU 
replacement, write-
back/allocate, hit time 9 cycles

L2 unified 
cache
(per core)

256KB, 64-byte blocks, 8-way, 
approx LRU replacement, write-
back/allocate, hit time n/a

512KB, 64-byte blocks, 16-way, 
approx LRU replacement, write-
back/allocate, hit time n/a

L3 unified 
cache 
(shared)

8MB, 64-byte blocks, 16-way, 
replacement n/a, write-
back/allocate, hit time n/a

2MB, 64-byte blocks, 32-way, 
replace block shared by fewest 
cores, write-back/allocate, hit 
time 32 cycles

n/a: data not available
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Miss Penalty Reduction
n Return requested word first

n Then back-fill rest of block
n Non-blocking miss processing

n Hit under miss: allow hits to proceed
n Miss under miss: allow multiple outstanding 

misses
n Hardware prefetch: instructions and data
n Opteron X4: bank interleaved L1 D-cache

n Two concurrent accesses per cycle
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Pitfalls
n Byte vs. word addressing

n Example: 32-byte direct-mapped cache,
4-byte blocks

n Byte 36 maps to block 1
n Word 36 maps to block 4

n Ignoring memory system effects when 
writing or generating code
n Example: iterating over rows vs. columns of 

arrays
n Large strides result in poor locality

§
5.11 Fallacies and Pitfalls
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Pitfalls
n In multiprocessor with shared L2 or L3 

cache
n Less associativity than cores results in conflict 

misses
n More cores Þ need to increase associativity

n Using AMAT to evaluate performance of 
out-of-order processors
n Ignores effect of non-blocked accesses
n Instead, evaluate performance by simulation
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Pitfalls
n Extending address range using segments

n E.g., Intel 80286
n But a segment is not always big enough
n Makes address arithmetic complicated

n Implementing a VMM on an ISA not 
designed for virtualization
n E.g., non-privileged instructions accessing 

hardware resources
n Either extend ISA, or require guest OS not to 

use problematic instructions
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Concluding Remarks
n Fast memories are small, large memories are 

slow
n We really want fast, large memories L
n Caching gives this illusion J

n Principle of locality
n Programs use a small part of their memory space 

frequently
n Memory hierarchy

n L1 cache « L2 cache « … « DRAM memory
« disk

n Memory system design is critical for 
multiprocessors

§
5.12 C

oncluding R
em

arks


